Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 463
Filtrar
1.
mSystems ; : e0024624, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564708

RESUMO

Dietary fiber deprivation is linked to probiotic extinction, mucus barrier dysbiosis, and the overgrowth of mucin-degrading bacteria. However, whether and how mucin could rescue fiber deprivation-induced intestinal barrier defects remains largely unexplored. Here, we sought to investigate the potential role and mechanism by which exogenous mucin maintains the gut barrier function. The results showed that dietary mucin alleviated fiber deprivation-induced disruption of colonic barrier integrity and reduced spermine production in vivo. Importantly, we highlighted that microbial-derived spermine production, but not host-produced spermine, increased significantly after mucin supplementation, with a positive association with upgraded colonic Lactobacillus abundance. After employing an in vitro model, the microbial-derived spermine was consistently dominated by both mucin and Lactobacillus spp. Furthermore, Limosilactobacillus mucosae was identified as an essential spermine-producing Lactobacillus spp., and this isolated strain was responsible for spermine accumulation, especially after adhering to mucin in vitro. Specifically, the mucin-supplemented bacterial supernatant of Limosilactobacillus mucosae was verified to promote intestinal barrier functions through the increased spermine production with a dependence on enhanced arginine metabolism. Overall, these findings collectively provide evidence that mucin-modulated microbial arginine metabolism bridged the interplay between microbes and gut barrier function, illustrating possible implications for host gut health. IMPORTANCE: Microbial metabolites like short-chain fatty acids produced by dietary fiber fermentation have been demonstrated to have beneficial effects on intestinal health. However, it is essential to acknowledge that certain amino acids entering the colon can be metabolized by microorganisms to produce polyamines. The polyamines can promote the renewal of intestinal epithelial cell and maintain host-microbe homeostasis. Our study highlighted the specific enrichment by mucin on promoting the arginine metabolism in Limosilactobacillus mucosae to produce spermine, suggesting that microbial-derived polyamines support a significant enhancement on the goblet cell proliferation and barrier function.

2.
Zool Res ; 45(3): 468-477, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38583938

RESUMO

Iron-sulfur clusters are essential cofactors for proteins involved in various biological processes, such as electron transport, biosynthetic reactions, DNA repair, and gene expression regulation. Iron-sulfur cluster assembly protein IscA1 (or MagR) is found within the mitochondria of most eukaryotes. Magnetoreceptor (MagR) is a highly conserved A-type iron and iron-sulfur cluster-binding protein, characterized by two distinct types of iron-sulfur clusters, [2Fe-2S] and [3Fe-4S], each conferring unique magnetic properties. MagR forms a rod-like polymer structure in complex with photoreceptive cryptochrome (Cry) and serves as a putative magnetoreceptor for retrieving geomagnetic information in animal navigation. Although the N-terminal sequences of MagR vary among species, their specific function remains unknown. In the present study, we found that the N-terminal sequences of pigeon MagR, previously thought to serve as a mitochondrial targeting signal (MTS), were not cleaved following mitochondrial entry but instead modulated the efficiency with which iron-sulfur clusters and irons are bound. Moreover, the N-terminal region of MagR was required for the formation of a stable MagR/Cry complex. Thus, the N-terminal sequences in pigeon MagR fulfil more important functional roles than just mitochondrial targeting. These results further extend our understanding of the function of MagR and provide new insights into the origin of magnetoreception from an evolutionary perspective.


Assuntos
Proteínas Ferro-Enxofre , Animais , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Ferro/metabolismo , Enxofre/metabolismo
3.
Am J Gastroenterol ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38477473

RESUMO

INTRODUCTION: Although cytologic examination of biliary stricture brushings obtained by endoscopic retrograde cholangiopancreatography is commonly used for diagnosing malignant biliary strictures (MBSs), it has low sensitivity. Several new brushes have capabilities that are still being debated. We have developed a novel brush working from conventional back-and-forth movement to rotation in situ (RIS) that may be more efficient for MBS sampling. We aimed to compare the MBS detection sensitivity of our RIS brush with that of the conventional brush. METHODS: In this multicenter prospective study, we enrolled patients who underwent endoscopic retrograde cholangiopancreatography for suspected MBSs involving biliary stricture brushings obtained using our RIS brush. The historical control group consisted of the 30-brushing arm of our previous randomized trial (patient inclusion, 2018-2020) that used the study design in the same centers and with the same endoscopists as were used in this study. The primary outcome was to compare the sensitivity and specificity of detecting MBSs by cytologic evaluation of biliary stricture brushings between the 2 groups. RESULTS: We enrolled 155 patients in the intent-to-treat analysis. Using the same number of brushing cycles, the RIS brush showed a higher sensitivity than the conventional brush (0.73 vs 0.56, P = 0.003). In per-protocol population, the sensitivity was also higher in the RIS brush group than in the conventional brush group (0.75 vs 0.57, P = 0.002). Multivariate analysis revealed that the RIS brush was the only predictive factor for MBS detection. No significant differences were observed in procedure-related complications between the 2 groups. DISCUSSION: The RIS brush was a promising tool for effective and safe MBS sampling and diagnosis. Further randomized studies are warranted to confirm our results (Chictr.org.cn, identifier: ChiCTR2100047270).

4.
Mol Med Rep ; 29(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38488028

RESUMO

Placenta accreta spectrum (PAS) is one of the most dangerous complications in obstetrics, which can lead to severe postpartum bleeding and shock, and even necessitate uterine removal. The abnormal migration and invasion of extravillous trophoblast cells (EVTs) and enhanced neovascularization occurring in an uncontrolled manner in time and space are closely related to the abnormal expression of pro­angiogenic and anti­angiogenic factors. The pigment epithelium­derived factor (PEDF) is a multifunctional regulatory factor that participates in several important biological processes and is recognized as the most efficient inhibitor of angiogenesis. The present study aimed to explore the effects of PEDF on EVT phenotypes and the underlying mechanisms in PAS. HTR­8/SVneo cells were transfected to overexpress or knock down PEDF. Cell proliferation and invasion were assessed using Cell Counting Kit­8, 5­ethynyl­2'­deoxyuridine and Transwell assays. In vitro angiogenesis was analyzed using tube formation assays. The degree of ferroptosis was assessed by evaluating the levels of lipid reactive oxygen species, total iron, Fe2+, malondialdehyde and reduced glutathione using commercial kits. The expression levels of biomarkers of ferroptosis, angiogenesis, cell proliferation and Wnt signaling were examined by western blotting. PEDF overexpression decreased the proliferation, invasion and angiogenesis, and induced ferroptosis of EVTs. Activation of Wnt signaling with BML­284 and overexpression of vascular endothelial growth factor (VEGF) reversed the PEDF overexpression­induced suppression of cell proliferation, invasion and tube formation. PEDF overexpression­induced ferroptosis was also decreased by Wnt agonist treatment and VEGF overexpression. It was predicted that PEDF suppressed the proliferation, invasion and angiogenesis, and increased ferroptosis in EVTs by decreasing Wnt­ß­catenin/VEGF signaling. The findings of the present study suggested a novel regulatory mechanism of the phenotypes of EVTs and PAS.


Assuntos
Proteínas do Olho , Ferroptose , Fatores de Crescimento Neural , Placenta Acreta , Serpinas , Gravidez , Humanos , Feminino , Fator A de Crescimento do Endotélio Vascular/metabolismo , 60683 , beta Catenina/metabolismo , Trofoblastos/metabolismo , Placenta Acreta/metabolismo , Via de Sinalização Wnt , 60489 , Proliferação de Células , Movimento Celular , Placenta/metabolismo
5.
Chem Sci ; 15(11): 3949-3956, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38487223

RESUMO

An in-depth understanding of cancer-cell mitosis presents unprecedented advantages for solving metastasis and proliferation of tumors, which has aroused great interest in visualizing the behavior via a luminescence tool. We developed a fluorescent molecule CBTZ-yne based on substituent engineering to acquire befitting lipophilicity and electrophilicity for anchoring lipid droplets and the nucleus, in which the low polarity environment and nucleic acids triggered a "weak-strong" fluorescence and "short-long" fluorescence-lifetime response. Meaningfully, CBTZ-yne visualized chromatin condensation, alignment, pull-push, and separation as well as lipid droplet dynamics, for the first time, precisely unveiling the asynchronous cellular mitosis processes affected by photo-generation reactive oxygen species according to the subtle change of fluorescence-lifetime. Our work suggested a new guideline for tracking the issue of the proliferation of malignant tumors in photodynamic therapy.

6.
Front Public Health ; 12: 1358577, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525336

RESUMO

Background: SARS-CoV-2 strains have been of great concern due to their high infectivity and antibody evasion. Methods: In this study, data were collected on indigenous aggregated outbreaks in Nanjing from January 2020 to December 2022, caused by five strains including the original strain, the Delta variant, and the Omicron variant (BA.2, BA.5.2, and BF.7). The basic epidemiological characteristics of infected individuals were described and then parametric analysis of transmission dynamics was performed, including the calculation of incubation period, serial interval (SI), the basic reproductive number (R0), and the household secondary attack rate (HSAR). Finally, we compared the trends of transmission dynamic parameters of different strains. Results: The incubation period for the original strain, the Delta variant, Omicron BA.2, Omicron BA.5.2, and Omicron BF.7 were 6 d (95% CI: 3.5-7.5 d), 5 d (95% CI: 4.0-6.0 d), 3 d (95% CI: 3.0-4.0 d), 3 d (95% CI: 3.0-3.0 d), and 2 d (95% CI: 2.0-3.0 d), respectively; Also, the SI of the five strains were 5.69 d, 4.79 d, 2.7 d, 2.12 d, and 2.43 d, respectively. Notably, the incubation period and SI of the five had both a progressive shortening trend (p < 0.001); Moreover, R0 of the five were 2.39 (95% CI: 1.30-4.29), 3.73 (95% CI: 2.66-5.15), 5.28 (95% CI: 3.52-8.10), 5.54 (95% CI: 2.69-11.17), 7.39 (95% CI: 2.97-18.76), with an increasing trend gradually (p < 0.01); HSAR of the five were 25.5% (95% CI: 20.1-31.7%), 27.4% (95% CI: 22.0-33.4%), 42.9% (95% CI: 34.3-51.8%), 53.1% (95% CI: 45.0-60.9%), 41.4% (95% CI, 25.5-59.3%), also with an increasing trend (p < 0.001). Conclusion: Compared to the original strain, the incubation period and SI decreased while R0 and HSAR increased, suggesting that transmission in the population was faster and the scope of the population was wider. Overall, it's crucial to keep implementing comprehensive measures like monitoring and alert systems, herd immunization plans, and outbreak control.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , Surtos de Doenças , China/epidemiologia
7.
Curr Issues Mol Biol ; 46(3): 1851-1864, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38534737

RESUMO

Autism spectrum disorder (ASD) is thought to result from susceptibility genotypes and environmental risk factors. The offspring of women who experience pregnancy infection have an increased risk for autism. Maternal immune activation (MIA) in pregnant animals produces offspring with autistic behaviors, making MIA a useful model for autism. However, how MIA causes autistic behaviors in offspring is not fully understood. Here, we show that NKCC1 is critical for mediating autistic behaviors in MIA offspring. We confirmed that MIA induced by poly(I:C) infection during pregnancy leads to autistic behaviors in offspring. We further demonstrated that MIA offspring showed significant microglia activation, excessive dendritic spines, and narrow postsynaptic density (PSD) in their prefrontal cortex (PFC). Then, we discovered that these abnormalities may be caused by overexpression of NKCC1 in MIA offspring's PFCs. Finally, we ameliorated the autistic behaviors using PFC microinjection of NKCC1 inhibitor bumetanide (BTN) in MIA offspring. Our findings may shed new light on the pathological mechanisms for autism caused by pregnancy infection.

8.
Cell Death Dis ; 15(3): 192, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448411

RESUMO

N6-methyladenosine (m6A) and its associated reader protein insulin like growth factor 2 mRNA binding protein 3 (IGF2BP3) are involved in tumor initiation and progression via regulating RNA metabolism. This study aims to investigate the biological function and clinical significance of IGF2BP3 in gastric cancer (GC). The clinical significance of IGF2BP3 was evaluated using tumor related databases and clinical tissues. The biological role and molecular mechanism of IGF2BP3 in GC progression were investigated by multi-omics analysis including Ribosome sequence (Ribo-seq), RNA sequence (RNA-seq) and m6A sequence (m6A-seq) combined with gain- and loss- of function experiments. IGF2BP3 expression is significantly elevated in GC tissues and associated with poor prognosis of GC patients. Knockdown of IGF2BP3 significantly weakens the migration and clonogenic ability, promotes the apoptosis, inhibits translation, and suppresses in vitro growth and progression of GC cells. Mechanistically, IGF2BP3 regulates the mRNA stability and translation of the nuclear factor of activated T cells 1(NFAT1) in a m6A dependent manner. Then NFAT1 induced by IGF2BP3 acts as a transcription factor (TF) to negatively regulates the promoter activities of interferon regulatory factor 1 (IRF1) to inhibit its expression. Inhibition of IGF2BP3-induced expression of IRF1 activates interferon (IFN) signaling pathway and then exerts its anti-tumor effect. Elevated IGF2BP3 promotes in vivo and in vitro GC progression via regulation of NFAT1/IRF1 pathways. Targeted inhibition of IGF2BP3 might be a potential therapeutic approach for GC treatment.


Assuntos
Neoplasias Gástricas , Humanos , Apoptose/genética , Transformação Celular Neoplásica , Fator Regulador 1 de Interferon , RNA , Neoplasias Gástricas/genética
10.
Microorganisms ; 12(2)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38399760

RESUMO

Fermentation of dietary fiber (DF) is beneficial for gut health, but its prebiotic effects are often impeded in the distal large intestine because of the fast degradation of fermentable substrates. One way to enhance the prebiotic effect of DF is to deliver fibers to the lower parts of the gut, which can be achieved by mixing different kinds of fiber. Therefore, in the present study, an ileum-cannulated pig model was employed to investigate the fermentation influence in the large intestine by infusing resistant starch solely (RS, fast fermentable fiber) and mixing with other fibers (xylan or cellulose). Twenty-four ileum-cannulated growing pigs were divided into four groups: one control group receiving saline ileal infusions and three experimental groups infused with RS, RS with xylan, or RS with cellulose. Fecal and plasma samples were analyzed for gut microbiota composition, short-chain fatty acids (SCFAs), and blood biochemistry. Results indicated no significant differences between the RS and control group for the microbiome and SCFA concentration (p > 0.05). However, RS combined with fibers, particularly xylan, resulted in enhanced and prolonged fermentation, marked by an increase in Blautia and higher lactate and acetate production (p < 0.05). In contrast, RS with cellulose infusion enriched bacterial diversity in feces (p < 0.05). Blood biochemistry parameters showed no significant differences across groups (p > 0.05), though a trend of increased glucose levels was noted in the treatment groups (p < 0.1). Overall, RS alone had a limited impact on the distal hindgut microbiota due to rapid fermentation in the proximal gut, whereas combining RS with other fibers notably improved gut microecology by extending the fermentation process.

11.
Theriogenology ; 218: 174-182, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38330861

RESUMO

The current study investigated effects of dietary amino acid (AA) availability on lactational body condition loss and metabolic status, in relation to reproductive parameters after weaning up to Day 8 post-ovulation. Primiparous sows (n = 35) were allocated to one of two lactation diets containing either low crude protein (CP, 140 g/kg) with a low percentage (8%) of slow protein in total protein (LL, n = 18) or high CP (180 g/kg) with a high (16%) percentage of slow protein (HH, n = 17). The HH diet was expected to improve AA utilization by supplying more AA, in a more gradual fashion. The diets did not affect sow body condition loss during lactation, while the HH diet tended to increase litter weight gain during the week 3 of lactation (Δ = 1.3 kg, P = 0.09). On Day 14 post-farrowing, HH diet led to higher plasma urea both pre-feeding and post-feeding (Δ = 2.3 mmol/L, P < 0.01, Δ = 2.4 mmol/L, P < 0.01, respectively), whilst plasma creatinine, NEFA and IGF-1 were similar. No dietary effects on reproductive parameters were found, however several relationships were found between body condition and reproductive parameters. Sows with higher body weight on Day 1 or Day 21 post-farrowing had greater follicle size on Day 3 post-weaning (ß = 0.03 mm/kg, P < 0.01, ß = 0.04 mm/kg, P < 0.01, respectively). At Day 8 post-ovulation, plasma progesterone concentration was negatively related to loin muscle loss (ß = -0.67 ng/ml · mm-1, P = 0.02), backfat loss (ß = -2.33 ng/ml · mm-1, P = 0.02), and estimated body fat loss (ß = -0.67 ng/ml · mm-1, P = 0.02). Both plasma progesterone and the number of corpora lutea were positively related to the energy balance during lactation (ß = 0.03 ng/ml · ME MJ-1, P = 0.01, ß = 0.01 CL/ME MJ, P = 0.02, respectively). The conceptus size at Day 8 post-ovulation was negatively related to body weight loss (ß = -0.01 mm/kg, P = 0.01), estimated body fat loss (ß = -0.02 mm/kg, P = 0.03) and estimated body protein loss (ß = -0.06 mm/kg, P = 0.04), and was positively related to the energy balance during lactation (ß = 5.2*10-4 mm/ME MJ, P = 0.01). In conclusion, body protein and fat losses during lactation reduced subsequent plasma progesterone concentration and conceptus development at Day 8 post-ovulation.


Assuntos
Lactação , Progesterona , Gravidez , Feminino , Suínos , Animais , Tamanho da Ninhada de Vivíparos , Lactação/fisiologia , Reprodução , Ovulação , Dieta/veterinária , Proteínas , Ração Animal/análise , Peso Corporal
12.
J Ethnopharmacol ; 326: 117926, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38369064

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Gentiana species, known as the traditional Tibetan medicine "Bangjian," have been integral to clinical practice for millennia. Despite their longstanding use, our understanding of the variation in chemical constituents and bioactive effects among different species is limited. AIM OF THE STUDY: In the present study, we aimed to assess the differences in chemical profiles and bioactivities among four Gentiana species (G. veitchiorum, G. trichotoma, G. crassuloides, and G. squarrosa) and explore potential bioactive markers. MATERIALS AND METHODS: The chemical composition of the four Gentiana species was analyzed using UPLC-QE-Orbitrap-MS. The antioxidant activity of the extracts was compared through DPPH, ABTS, and reducing power assays. The anti-inflammatory activity was evaluated by measuring the inhibitory effects on lipopolysaccharide-induced secretion of nitric oxide (NO), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) by RAW264.7 macrophages. Additionally, compounds strongly correlated with anti-inflammatory and antioxidant activities were identified through spectrum-effect relationship analysis. RESULTS: A total of 50 compounds were identified across the four Gentiana species. In vitro antioxidant assays demonstrated DPPH and ABTS scavenging abilities and reducing power within the concentration range of 62.5-2000 µg/mL. All four species inhibited the production of NO, IL-6, and TNF-α in RAW264.7 cells. Spectrum-effect relationship analysis revealed that gentiascabraside A, gentiatibetine, tachioside, lutonarin, and isotachioside were associated with the highest antioxidant activity; and swertiamarin, tarennoside, eleganoside C, and alpigenoside were associated with the highest anti-inflammatory activity. CONCLUSIONS: This study presents, for the first time, the chemical profiles and bioactivities of G. trichotoma, G. crassuloides, and G. squarrosa, which were comprehensively compared with those of G. veitchiorum. The findings provide novel insights to understand the traditional use and/or expand the current use of Gentiana species. Additionally, this research highlights the potential of Gentiana species as natural sources of antioxidants and anti-inflammatory agents, suggesting promising applications in tea production or medicinal contexts in the near future.


Assuntos
Benzotiazóis , Gentiana , Ácidos Sulfônicos , Gentiana/química , Antioxidantes/farmacologia , Antioxidantes/química , Extratos Vegetais/química , Tibet , Fator de Necrose Tumoral alfa , Interleucina-6 , Anti-Inflamatórios/farmacologia
13.
Bioact Mater ; 35: 477-494, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38404640

RESUMO

Caries is one of the most prevalent human diseases, resulting from demineralization of tooth hard tissue caused by acids produced from bacteria, and can progress to pulpal inflammation. Filling restoration with dental resin composites (DRCs) is currently the most common treatment for caries. However, existing DRCs suffer from low fracture strength and lack comprehensive anti-caries bioactivity including remineralization, pulp protection, and anti-cariogenic bacteria effects. In this study, inspired by plant roots' ability to stabilize and improve soil, fluorinated urchin-like hydroxyapatite (FUHA) with a three-dimensional whisker structure and bioactive components of calcium, phosphorus, and fluorine was designed and synthesized by a dynamic self-assembly method. Furthermore, versatile FUHA particles with different loading fractions were used as functional fillers to fabricate methacrylate-based DRCs, where the urchin-like hydroxyapatite (UHA) filled DRCs and commercial DRCs (Z350XT and BEAUTIFIL II) served as the control groups. The results demonstrated that FUHA with 50 wt% loading in resin matrix endowed DRC (F5) with excellent physicochemical properties, dentin remineralization property, cell viability, promotion of dental pulp stem cells mineralization, and antibacterial properties. Meanwhile, F5 also presented good clinical handling and aesthetic characteristics. Therefore, structure/functional-integrated FUHA filled DRCs have potential as a promising strategy for tooth restoration and anti-caries bioactivity.

16.
Sci Rep ; 14(1): 4758, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413678

RESUMO

The relationship between social support and mortality, especially cardio-cerebrovascular mortality, still has some limitations in the assessment of social support, sample selection bias, and short follow-up time. We used the data from 2005 to 2008 National Health and Nutrition Examination Survey to examine this relationship. The study analyzed a total of 6776 participants, divided into Group 1, Group 2, and Group 3 according to the social support score (0-1; 2-3; 4-5). Multivariable adjusted COX regression analyses of our study showed that Group 3 and Group 2 had a reduced risk of all-cause and cardio-cerebrovascular mortality (Group 3 vs 1, HR: 0.55, P < 0.001; HR: 0.4, P < 0.001; Group 2 vs 1, HR: 0.77, P = 0.017; HR: 0.58, P = 0.014) compared with Group 1. The same results were observed after excluding those who died in a relatively short time. Additionally, having more close friends, being married or living as married, and enough attending religious services were significantly related to a lower risk of mortality after adjustment. In brief, adequate social support is beneficial in reducing the risk of all-cause mortality and cardio-cerebrovascular mortality in middle-aged and older adults, especially in terms of attending religious services frequency, the number of close friends, and marital status.


Assuntos
Amigos , Apoio Social , Pessoa de Meia-Idade , Humanos , Idoso , Inquéritos Nutricionais , Análise de Regressão
17.
Anim Nutr ; 16: 105-121, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38357575

RESUMO

Low-fishmeal and protein-saving diets are two prominent nutritional strategies utilized to address challenges related to the scarcity and sustainability of protein sources in aquaculture. However, these diets have been associated with adverse effects on the growth performance, feed utilization, and disease resistance of aquatic animals. To mitigate these challenges, exogenous protease has been applied to enhance the quality of diets with lower protein contents or fishmeal alternatives, thereby improving the bioavailability of nutritional ingredients. Additionally, protease preparations were also used to enzymatically hydrolyze fishmeal alternatives, thus enhancing their nutritional utilization. The present review aims to consolidate recent research progress on the use of protease in aquaculture and conclude the benefits and limitations of its application, thereby providing a comprehensive understanding of the subject and identifying opportunities for future research.

18.
J Nanobiotechnology ; 22(1): 65, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365722

RESUMO

BACKGROUNDS: The intestinal development in early life is profoundly influenced by multiple biological components of breast milk, in which milk-derived extracellular vesicles (mEVs) contain a large amount of vertically transmitted signal from the mother. However, little is known about how maternal fiber-rich diet regulates offspring intestinal development by influencing the mEVs. RESULTS: In this study, we found that maternal resistant starch (RS) consumption during late gestation and lactation improved the growth and intestinal health of offspring. The mEVs in breast milk are the primary factor driving these beneficial effects, especially enhancing intestinal cell proliferation and migration. To be specific, administration of mEVs after maternal RS intake enhanced intestinal cell proliferation and migration in vivo (performed in mice model and indicated by intestinal histological observation, EdU assay, and the quantification of cyclin proteins) and in vitro (indicated by CCK8, MTT, EdU, and wound healing experiments). Noteworthily, miR-146a-5p was found to be highly expressed in the mEVs from maternal RS group, which also promotes intestinal cell proliferation in cells and mice models. Mechanically, miR-146a-5p target to silence the expression of ubiquitin ligase 3 gene NEDD4L, thereby inhibiting DVL2 ubiquitination, activating the Wnt pathway, and promoting intestinal development. CONCLUSION: These findings demonstrated the beneficial role of mEVs in the connection between maternal fiber rich diet and offspring intestinal growth. In addition, we identified a novel miRNA-146a-5p-NEDD4L-ß-catenin/Wnt signaling axis in regulating early intestinal development. This work provided a new perspective for studying the influence of maternal diet on offspring development.


Assuntos
Vesículas Extracelulares , MicroRNAs , Humanos , Feminino , Animais , Gravidez , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Leite , Proliferação de Células , Vesículas Extracelulares/metabolismo , Dieta
19.
Anal Chem ; 96(8): 3535-3543, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38353024

RESUMO

Currently, in situ monitoring of the adenosine triphosphate (ATP) level in lysosomes is critical to understand their involvement in various biological processes, but it remains difficult due to the interferences of limited targeting and low resolution of fluorescent probes. Herein, we report a classic Mn(II) probe (FX2-MnCl2) with near-infrared (NIR) nonlinear (NLO) properties, accompanied by three-four photon transition and fivefold fluorescence enhancement in the presence of ATP. FX2-MnCl2 combines with ATP through dual recognition sites of diethoxy and manganese ions to reflect slightly fluorescence lifetime change. Through the synergy of multiphoton fluorescence imaging (MP-FI) and multiphoton fluorescence lifetime imaging microscopy (MP-FLIM), it is further demonstrated that FX2-MnCl2 displays lysosome-specific targeting behavior, which can monitor lysosome-related ATP migration under NIR laser light. This work provides a novel multiphoton transformation fluorescence complex, which might be a potential candidate as a simple and straightforward biomarker of lysosome ATP in vitro for clinical diagnosis.


Assuntos
Corantes Fluorescentes , Lisossomos , Microscopia de Fluorescência/métodos , Imagem Óptica , Fótons , Microscopia de Fluorescência por Excitação Multifotônica/métodos
20.
J Agric Food Chem ; 72(7): 3596-3605, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38270580

RESUMO

Knowledge about the prebiotic characteristics of cellulose by in vitro fermentation is not complete due to the neglect of small intestinal fermentation. This study investigated the effects of small intestinal fermentation on the prebiotic characteristics of cellulose in the large intestine and potential mechanisms through an approach of combined in vivo small intestinal fermentation and in vitro fermentation. The structural similarity between cellulose in feces and after processing by the approach of this study confirmed the validity of the approach employed. Results showed that small intestinal fermentation of cellulose increased both acetate and propionate content and enriched Corynebacterium selectively. Compared to in vitro fermentation after in vitro digestion of cellulose, the in vitro fermentation of cellulose after in vivo small intestinal fermentation produced higher contents of acetate and propionate as well as the abundance of probiotics like Ruminococcaceae_UCG-002, Blautia, and Bifidobaterium. The changes in the structural features of cellulose after in vivo small intestinal fermentation were more obvious than those after in vitro digestion, which may account for the greater production of short-chain fatty acids (SCFAs) and the abundance of probiotics. In summary, small intestinal fermentation enhanced the prebiotic characteristics of cellulose in the large intestine by predisrupting its structure.


Assuntos
Celulose , Prebióticos , Celulose/metabolismo , Prebióticos/análise , Propionatos/metabolismo , Fermentação , Intestino Grosso/metabolismo , Ácidos Graxos Voláteis/metabolismo , Acetatos/metabolismo , Fezes/microbiologia , Digestão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...